

Modulhandbuch

Unterrichtsfach Physik für Lehramt an Grundschulen (LPO-UA 2008)

Lehramt

Gültig ab Wintersemester 2008/2009

Modulhandbuch für das Studium von Physik als Unterrichtsfach für das Lehramt an Grundschulen gemäß LPO-UA 2008

Übersicht nach Modulgruppen

1)	Fachdidaktik Physik für das Lehramt an Grundschulen (LPO-UA 2008) Enthält die Module für die Fachdidaktik im Lehramtsstudiengang Unterrichtsfach Physik an Grundschulen gemäß LPO-UA 2008	
	DNW-7001 (= GsPhy-01-DID): Allgemeine Fachdidaktik Physik (= Allgemeine Fachdidaktik Physik) (= ECTS/LP, Pflicht)	
	DNW-7005 (= GsPhy-02-DID): spezielle Fachdidaktik: Physik an der Grundschule (= Spezielle Fachdidaktik "Physik in der Grundschule") (2 ECTS/LP, Pflicht)	. 5
	DNW-7016 (= GsPhy-21-DID): Experimente im Sachunterricht der Grundschule (UF) (= Experimentelle Übungen für die Grundschule) (3 ECTS/LP, Pflicht)	. 7
	DNW-7017 (= GsPhy-22-DID): Fächerübergreifender Unterricht in der Grundschule (UF) (= Fächerübergreifender Unterricht in der Grundschule) (3 ECTS/LP, Pflicht)	.9
	DNW-7018 (= GsPhy-23-DID): Fachliche Ergänzung (UF Grundschule) (= fachliche Ergänzung) (2 ECTS/LP, Pflicht)	11
2)	Fachwissenschaft Physik für das Lehramt an Grundschulen (LPO-UA 2008) Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich	
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im	12
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich	
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik) (8 ECTS/LP, Pflicht)	14
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik) (8 ECTS/LP, Pflicht) PHM-0143 (= GsHsPhy-03-Math): Mathematische Ergänzungen (= Mathematische Ergänzungen für Grundschule, Mittelschule) (8 ECTS/LP, Pflicht)	14 16
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik) (8 ECTS/LP, Pflicht)	14 16 19
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik) (8 ECTS/LP, Pflicht)	14 16 19 21
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik) (8 ECTS/LP, Pflicht)	14 16 19 21 23
2)	Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik) (8 ECTS/LP, Pflicht)	14 16 19 21 23 25

Modul DNW-7001 (= GsPhy-01-DID): Allgemeine Fachdidaktik Physik (= Allgemeine Fachdidaktik Physik)

ECTS/LP: 4

Version 1.0.0 (seit WS08/09 bis SoSe12)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Inhalte:

Begründung/Legitimation des Physikunterrichts;

Bildungsziele des Fachs Physik;

Kompetenzmodelle und Bildungsstandards;

Elementarisierung und didaktische Rekonstruktion physikalischer Inhalte;

Methoden im Physikunterricht;

Medien im Physikunterricht und deren lernfördernder Einsatz;

Evaluation:

Schülervorstellungen und typische Lernschwierigkeiten in den unterrichtsrelevanten Themengebieten der Physik und darauf basierende Unterrichtsansätze;

Methoden zur Veränderung von Schülervorstellungen;

Erkenntnis- und Arbeitsmethoden der Fachwissenschaft Physik;

Lernziele/Kompetenzen:

Kenntnis der Legitimation und der Bildungsziele des Fachs Physik;

Fähigkeit, die Möglichkeiten der Elementarisierung und Methoden des Physikunterrichts einzusetzen;

Übersicht über physikalische Lehr- und Arbeitsmittel;

Vertieftes qualitatives Verständnis für schulrelevante physikalische Inhaltsgebiete;

Verständnis für typische Schülervorstellungen und typische Lernschwierigkeiten;

Kenntnisse, durch welches Vorgehen Schülervorstellungen verändert werden können;

Einblick in alternative Unterrichtsansätze bei ausgewählten Inhaltsbereichen;

Bereitschaft zur Anwendung von Erkenntnismethoden der Physik;

Arbeitsaufwand:

Gesamt: 120 Std.

Voraussetzungen: keine		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
sws : 3	Wiederholbarkeit: beliebig	

Modulteile

Modulteil: allgemeine Fachdidaktik Physik

Sprache: Deutsch

SWS: 3 **ECTS/LP**: 4

Lernziele:

siehe Modulbeschreibung

Inhalte:

Literatur:

Martin Hopf, Horst Schecker, Hartmut Wiesner: Physikdidaktik kompakt, Aulis-Verlag, ISBN 978-3-7614-2784-2 Kircher, Girwidz, Häußler: Physikdidaktik. Theorie und Praxis, Springer-Verlag, ISBN 978-3642016011 Bleichroth, Dahncke, Jung, Kuhn, Merzyn, Weltner: Fachdidaktik Physik, Aulis-Verlag, 1999, ISBN 3-7614-2079-X Helmut Mikelskis (Hrsg.): Physik-Didaktik, Cornelsen Scriptor, 2006, ISBN 978-3-589-22148-6 Silke Mikelskis-Seifert, Thorid Rabe (Hrsg.): Physik Methodik, Cornelsen Scriptor, ISBN 978-3-589-22377-0

Prüfung

schriftliche Modulprüfung

Klausur / Prüfungsdauer: 60 Minuten

Prüfungsvorleistungen:

Vorlesung, Übung, Arbeitsmaterial zur Vorlesung

Beschreibung:

schriftliche Prüfung über die Themen der Vorlesung

Modul DNW-7005 (= GsPhy-02-DID): spezielle Fachdidaktik: Phy-	ECTS/LP: 2
sik an der Grundschule (= Spezielle Fachdidaktik "Physik in der	
Grundschule")	

Version 1.0.0 (seit WS08/09 bis SoSe12)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Inhalte:

- 1. Physikunterricht an der Grundschule?
- 2. Didaktische Besonderheiten der Grundschule:
- 2.1 Grundschulpädagogik: Beobachtungsgabe fördern, Geschicklichkeit schulen, Abstraktionsvermögen entwickeln
- 2.2 Fachverständnis und Fachdidaktik:

Präkonzepte, Alltagserfahrungen und "Naturgesetze", Überblick über fachdidaktische Konzeptionen, Physik lernen: Elementarisierung und didaktische Rekonstruktion auf Grundschulniveau

- 3. Angewandte Physikdidaktik an ausgewählten Themen:
- 3.1 Experimente:
- 3.2 Rechnen
- 3.3 Medien
- 3.4 Methoden der Schüleraktivierung
- 4. Beispiele von Unterrichtsszenarien

Lernziele/Kompetenzen:

Die Studierenden erwerben

- Kenntnisse über bildungsrelevante Inhalte und Methoden des Physikunterrichts in ihrer jeweiligen Schulart
- einen Überblick über Präkonzepte der Lernenden und deren Bedeutung für den Lernprozess
- Kompetenzen im eigenständigen Beurteilen der fachdidaktischen Problemstellungen des Unterrichts

Bemerkung:

Diese Lehrveranstaltung findet nach der LPO-UA 2012 nicht mehr statt. Studierende des Lehramts Grundschule mit Physik gemäß LPO-UA 2008 mögen sich baldmöglichst mit dem Modulbeauftragten in Verbindung setzen.

Arbeitsaufwand:

Gesamt: 60 Std.

Voraussetzungen: keine		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: unregelmäßig (i. d. R. im SoSe)	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: beliebig	

Modulteile

Modulteil: spezielle Fachdidaktik Physik an der Grundschule

Sprache: Deutsch

SWS: 2 **ECTS/LP**: 2

Lernziele:

siehe Modulbeschreibung

Inhalte:

Literatur:

Martin Hopf, Horst Schecker, Hartmut Wiesner: Physikdidaktik kompakt, Aulis-Verlag, ISBN 978-3-7614-2784-2 Kircher, Girwidz, Häußler: Physikdidaktik. Theorie und Praxis, Springer-Verlag, ISBN 978-3642016011 Bleichroth, Dahncke, Jung, Kuhn, Merzyn, Weltner: Fachdidaktik Physik, Aulis-Verlag, 1999, ISBN 3-7614-2079-X Helmut Mikelskis (Hrsg.): Physik-Didaktik, Cornelsen Scriptor, 2006, ISBN 978-3-589-22148-6 Silke Mikelskis-Seifert, Thorid Rabe (Hrsg.): Physik Methodik, Cornelsen Scriptor, ISBN 978-3-589-22377-0

Zugeordnete Lehrveranstaltungen:

spezielle Fachdidaktik (Lehrämter Grund-, Haupt- und Realschule) (Vorlesung)

Fahdidaktik Physik unter besonderer Berücksichtigung der Unterrichtsformen an Grund-, Haupt- und Realschule (Lehrveranstaltung wird zeitweise schulartspezfisch geteilt)

Prüfung

Vorlesungsprotokoll

Portfolioprüfung, unbenotet

Prüfungsvorleistungen:

Mitschrift der Vorlesung

Modul DNW-7016 (= GsPhy-21-DID): Experimente im Sachunterricht der Grundschule (UF) (= Experimentelle Übungen für die Grundschule)

ECTS/LP: 3

Version 1.0.0 (seit WS08/09 bis SoSe12)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Inhalte:

Themen:

Sinneswahrnehmung und Messen

Akustik

Optik und Sehen Magnetismus

Elektrizität, Strom

Teilchenmodell

Wasser, Lösung, Aggregatzustände

Luft

Lernziele/Kompetenzen:

Die Studierenden

- erkennen die physikalischen Hintergründe im HSU-Unterricht
- sind befähigt zur altersgemäßen experimentellen Umsetzung von Experimenten
- wissen um die Möglichkeiten der Hinführung zu wissenschaftlichem Arbeiten

Bemerkung:

Auch im freien Bereich der Grundschulpädagogik

Anmeldung zum Kurs über digicampus, endgültige Platzvergabe und Zeitfestlegung in der Vorbesprechung, deren Termin ebenfalls über digicampus bekannt gegeben wird

Arbeitsaufwand:

Gesamt: 90 Std.

Voraussetzungen: keine		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: beliebig	

Modulteile

Modulteil: Experimente im Sachunterricht der Grundschule

Sprache: Deutsch

SWS: 2 **ECTS/LP**: 3

Lernziele:

siehe Modulbeschreibung

Inhalte:

siehe Modulbeschreibung

Literatur:

wird in der Lehrveranstaltung bekannt gegeben

Zugeordnete Lehrveranstaltungen:

Experimente im Sachunterricht der Grundschule

endgültige Platzvergabe und Zeitfestlegung in der Vorbesprechung am 012.04.16 um 14.30 Uhr in Raum 130 Physikgebäude Nord

Prüfung

Modulprüfung Experimente im Sachunterricht

Portfolioprüfung, unbenotet

Prüfungsvorleistungen:

Durchführung der Experimente

Beschreibung:

Im Rahmen des Kurses ist eine thematische Einheit vorzubereiten und mit den übrigen Kursteilnehmern durchzuführen

Modul DNW-7017 (= GsPhy-22-DID): Fächerübergreifender Unterricht in der Grundschule (UF) (= Fächerübergreifender Unterricht in der Grundschule)

ECTS/LP: 3

Version 1.0.0 (seit WS08/09 bis SoSe12)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Inhalte:

Alltagsphänomene als Grundlage naturwissenschaftlicher Erkenntnis

Sachrechnen und naturwissenschaftliches Arbeiten

Sprachlehre und Fähigkeit zur kritischen Beobachtung

Lernziele/Kompetenzen:

Fähigkeit zur sachkompetenten Analyse fächerübergreifender Themenkomplexe

Kenntnis der fachlichen Komponenten

Einsicht in die didaktische Aufbereitung fächerübergreifender Unterrichtsinhalte

Bearbeitung ausgewählter Beispiele

Bemerkung:

Diese Lehrveranstaltung findet nur bei einer ausreichenden Zahl von Interessenten statt. Studierende des Lehramts Grundschule mit Didaktikfach Physik mögen sich baldmöglichst mit dem Modulbeauftragten in Verbindung setzen.

Anmeldung zum Kurs über digicampus, endgültige Platzvergabe und Zeitfestlegung in der Vorbesprechung, deren Termin ebenfalls in digicampus bekannt gegeben wird.

Arbeitsaufwand:

Gesamt: 90 Std.

1		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
sws : 2	Wiederholbarkeit: beliebig	

Modulteile

Modulteil: Fächerüberreifender Unterricht in der Grundschule

Sprache: Deutsch

Angebotshäufigkeit: unregelmäßig (i. d. R. im SoSe)

SWS: 2 **ECTS/LP**: 3

Lernziele:

siehe Modulbeschreibung

Inhalte:

siehe Modulbeschreibung

Literatur:

wird in der Lehrveranstaltung bekannt gegeben

Zugeordnete Lehrveranstaltungen:

Fächerübergreifender Unterricht in der Grundschule (Seminar)

Sachunterrichtsthemen in allen Bereichen des Grundschulunterrichts einbringen

Prüfung

Modulprüfung Fächerübergreifender Unterricht

Portfolioprüfung, unbenotet

Beschreibung:

Im Rahmen des Kurses ist eine thematische Einheit vorzubereiten und mit den übrigen Kursteilnehmern durchzuführen

Modul DNW-7018 (= GsPhy-23-DID): Fachliche Ergänzung (UF Grundschule) (= fachliche Ergänzung)

ECTS/LP: 2

Version 1.0.0 (seit WS08/09 bis SoSe12)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Inhalte:

Je nach gewählter Lehrveranstaltung; die Inhalte sollen die fachlichen Grundlagen für den Sachunterricht, wie sie in Physik erworben wurden, auf andere sachunterrichtsrelevante Fachbereiche erweitern (Biologie, Chemie, Geografie)

Lernziele/Kompetenzen:

Verbreiterung der naturwissenschatlichen Fachkompetenz um für den Sachunterricht relevante Bereiche (Chemie, Biologie, Geografie)

Bemerkung:

Anmeldung über digicampus, endgültige Zulassung gemäß den Modalitäten der jeweiliegen Lehrveranstaltung

Arbeitsaufwand:

Gesamt: 60 Std.

1		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jedes Semester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
SWS : 2	Wiederholbarkeit: beliebig	

Modulteile

Modulteil: Fachliche Ergänzung (UF Grundschule)

Sprache: Deutsch

Angebotshäufigkeit: unregelmäßig

SWS: 2 **ECTS/LP**: 2

Lernziele:

siehe jeweilige Lehrveranstaltung

Inhalte:

siehe jeweilige Lehrveranstaltung

Literatur:

siehe jeweilige Lehrveranstaltung

Zugeordnete Lehrveranstaltungen:

Schülervorstellung - Bremser oder Förderer für das Lernen in der Physik? (Seminar)

Prüfung

Modulprüfung gemäß Regularien der jeweiligen Lehrveranstaltung

Beteiligungsnachweis, unbenotet

Prüfungsvorleistungen:

Teilnahme an der Lehrveranstaltung

Beschreibung:

Die Prüfungsmodalitäten bestimmen sich nach den Regelungen der jeweiligen Lehrveranstaltung

Modul PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik)

ECTS/LP: 8

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Achim Wixforth

Inhalte:

- Mechanik von Massenpunkten und Systeme von Massenpunkten
- · Mechanik und Dynamik ausgedehnter starrer Körper
- · Relativistische Mechanik
- · Mechanische Schwingungen und Wellen
- · Mechanik und Dynamik von Gasen und Flüssigkeiten
- Wärmelehre

Lernziele/Kompetenzen:

- Die Studierende wissen die grundlegenden Begriffe, Konzepte und Phänomene der klassischen Mechanik, von Schwingungen und Wellen in mechanischen Systemen und der Thermodynamik (Wärmelehre und statistische Deutung),
- besitzen Fertigkeiten in einfacher Modellbildung, der Formulierung mathematisch-physikalischer Ansätze und können diese auf Aufgabenstellungen in den genannten Bereichen anwenden und
- besitzen Kompetenzen in der selbständigen Bearbeitung von Problemstellungen aus den genannten Themenbereichen. Sie sind in der Lage, Genauigkeiten von Beobachtung und Analyse einschätzen zu können.
- Integrierter Erwerb von Schlüsselqualifikationen: analytisch-methodische Kompetenz, wissenschaftliches Denken, Abwägen von Lösungsansätzen, Training des logischen Denkens, Teamfähigkeit, Erlernen des eigenständigen Arbeitens mit (englischsprachiger) Fachliteratur

Arbeitsaufwand:

Gesamt: 240 Std.

90 h Vor- und Nachbereitung des Stoffes Übung/Fallstudien, Eigenstudium

30 h Vor- und Nachbereitung des Stoffes durch Literatur, Eigenstudium

30 h Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen, Eigenstudium

90 h Vorlesung und Übung, Präsenzstudium

Voraussetzungen: keine		
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 1.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Physik I (Mechanik, Thermodynamik)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Lernziele:

siehe Modulbeschreibung

Inhalte:

Literatur:

• Alonso-Finn: Fundamental University Physics I, III

Demtröder: ExperimentalphysikHalliday, Resnick & Walker: Physik

Tipler & Mosca: PhysikMeschede: Gerthsen Physik

Modulteil: Übung zu Physik I

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Lernziele:

siehe Modulbeschreibung

Prüfung

Physik I (Mechanik, Thermodynamik)

Klausur / Prüfungsdauer: 150 Minuten

Modul PHM-0143 (= GsHsPhy-03-Math): Mathematische Ergänzungen (= Mathematische Ergänzungen für Grundschule, Mittelschule)

ECTS/LP: 8

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Thilo Kopp

Inhalte:

Dieses Modul ist als Begleitung zu den Modulen "Physik I" (PHM-0001, PHM-0002) und "Physik II" (PHM-0003, PHM-0004) konzipiert und behandelt die in diesen Modulen benötigten mathematischen Methoden.

Das Modul wird als Vorlesung mit integrierten Übungsphasen abgehalten, in denen der vorgestellte Stoff anhand von Beispielen eigenständig oder in Kleingruppen vertieft wird.

Lernziele/Kompetenzen:

Die Studierenden

- kennen die grundlegenden Konzepte der Mathematik, die zur Beschreibung physikalischer Phänomene und Prozesse erforderlich sind,
- praktizieren sie durch selbständige Arbeit im Eigenstudium und in den Übungsgruppen und
- besitzen die Kompetenz, elementare physikalische Problemstellungen in Form von Gleichungen zu formulieren, diese selbständig zu lösen und die Ergebnisse in Form von einfachen und allgemein verständlichen physikalischen Bildern zu interpretieren.

Arbeitsaufwand:

Gesamt: 240 Std.

80 h Vor- und Nachbereitung des Stoffes Übung/Fallstudien, Eigenstudium

50 h Vor- und Nachbereitung des Stoffes durch Literatur, Eigenstudium

20 h Übung, Präsenzstudium

50 h Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen, Eigenstudium

40 h Vorlesung, Präsenzstudium

Voraussetzungen: keine		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jährlich	Empfohlenes Fachsemester: 1.	Minimale Dauer des Moduls: 2 Semester
SWS : 4	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Mathematische Ergänzungen I

Lehrformen: Vorlesung, Übung

Sprache: Deutsch

Angebotshäufigkeit: jedes Wintersemester

SWS: 2

Inhalte:

Dieser Modulteil stellt in erster Linie die mathematischen Methoden bereit, die in der Mechanik benötigt werden:

- Vektorrechnung
- · Differentialrechnung
- · Komplexe Zahlen
- Differentialgleichungen

Literatur:

• Klaus Weltner, Mathematik für Physiker 1 (Springer-Verlag), vor allem Kapitel 1, 2, 5-9

Modulteil: Mathematische Ergänzungen II

Lehrformen: Vorlesung, Übung

Sprache: Deutsch

Angebotshäufigkeit: jedes Sommersemester

SWS: 2

Inhalte:

Dieser Modulteil stellt in erster Linie die mathematischen Methoden bereit, die in der Elektrodynamik benötigt werden:

- Linienintegrale
- Divergenz
- Oberflächenintegrale
- · Satz von Gauß
- · Rotation
- · Satz von Stokes

Literatur:

• Klaus Weltner, Mathematik für Physiker 2 (Springer-Verlag), vor allem Kapitel 13-18

Zugeordnete Lehrveranstaltungen:

Mathematische Ergänzungen II (Vorlesung + Übung)

Diese Lehrveranstaltung hat das Ziel, mathematische Grundkenntnisse zum Gebrauch in der Vorlesung? Physik II? zu vermitteln und stellt die Fortsetzung der Vorlesung? Mathematische Ergänzungen I? dar. Zu behandelnde Themen sind die Integralrechnung in mehreren Dimensionen, inbesondere Linien-, Oberflächen- und Volumenintegrale sowie die Vektoranalysis, insbesondere Gradient, Divergenz, Rotation sowie die Integralsätze von Gauß und Stokes.

Prüfung

Mathematische Ergänzungen

Klausur / Prüfungsdauer: 120 Minuten, unbenotet

Beschreibung:

Die Klausur findet zum Ende des jeweiligen Sommersemesters statt, die Wiederholungsklausur zum Ende des darauf folgenden Wintersemesters. Die Anmeldung zur Klausur (über STUDIS) muss in dem Semester erfolgen, in dem die Prüfung abgelegt wird.

Modul PHM-0003 (= GsHsPhy-02-EP): Physik II (Elektrodynamik, Optik)

ECTS/LP: 8

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Achim Wixforth

Inhalte:

- 1. Elektrizitätslehre
- 2. Magnetismus
- 3. Elektrodynamik, Maxwell-Gleichungen
- 4. Elektromagnetische Wellen
- 5. Optik

Lernziele/Kompetenzen:

- Die Studierenden kennen die grundlegenden Begriffe, Konzepte und Phänomene der Elektrostatik und des Magnetismus; des weiteren die Grundbegriffe der Elektrodynamik sowie der elektromagnetischen Wellen und – daraus abgeleitet – der Optik,
- besitzen Fertigkeiten in der mathematischen Beschreibung elektromagnetischer Phänomene, Modellbildung, der Formulierung mathematisch-physikalischer Ansätze und können diese auf Aufgabenstellungen in den genannten Bereichen anwenden und
- besitzen Kompetenzen in der selbständigen Bearbeitung von Problemstellungen zu den genannten Themenbereichen. Sie sind in der Lage, Genauigkeiten von Beobachtung und Analyse einschätzen zu können.
- Integrierter Erwerb von Schlüsselqualifikationen: analytisch-methodische Kompetenz, wissenschaftliches Denken, Abwägen von Lösungsansätzen, Training des logischen Denkens, Teamfähigkeit, Erlernen des eigenständigen Arbeitens mit (englischsprachiger) Fachliteratur

Arbeitsaufwand:

Gesamt: 240 Std.

90 h Vorlesung und Übung, Präsenzstudium

90 h Vor- und Nachbereitung des Stoffes Übung/Fallstudien, Eigenstudium

30 h Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen, Eigenstudium

30 h Vor- und Nachbereitung des Stoffes durch Literatur, Eigenstudium

Voraussetzungen: Inhalte des Moduls Physik I		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 2.	Minimale Dauer des Moduls: 1 Semester
sws : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Physik II (Elektrodynamik, Optik)

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Lernziele:

Inhalte:

- 1. Elektrizitätslehre
 - Elektrische Wechselwirkung
 - · Elektrische Leitung

2. Magnetismus

- · Magnetische Kraftwirkung auf bewegte Ladungen
- Das Magnetfeld bewegter elektrischer Ladungen
- Magnetische Wechselwirkung zwischen bewegten Ladungen
- · Materie im statischen elektrischen und magnetischen Feld
- 3. Elektrodynamik, Maxwell-Gleichungen
 - Elektromagnetische Induktion: Faraday-Henry-Satz
 - · Ampere-Maxwell-Satz
 - · Maxwell-Gleichungen
- 4. Elektromagnetische Wellen
 - Grundlagen
 - · Das Huygens'sche Prinzip
 - · Reflexion und Brechung
 - · Beugung und Interferenz
 - Überlagerung mehrerer ebener Wellen
 - · Beugung am Gitter
 - · Wellenausbreitung in dispersiven Medien
 - · EM Wellen im Vakuum
 - EM Wellen in homogenen, isotropen, neutralen Medien
 - Reflexion und Brechung ebener harmonischer EM Wellen
 - Entstehung und Erzeugung von EM Wellen

5. Optik

- Spiegelung und Brechung
- · Abbildungseigenschaften und Abbildungsfehler
- · Optische Instrumente
- · Interferenz, Beugung und Holographie

Literatur:

• Alonso-Finn: Fundamental University Physics II

Demtröder: ExperimentalphysikHalliday, Resnick & Walker: Physik

Tipler & Mosca: PhysikMeschede: Gerthsen Physik

Zugeordnete Lehrveranstaltungen:

Physik II (Elektrodynamik, Optik) (Vorlesung)

Modulteil: Übung zu Physik II

Lehrformen: Übung Sprache: Deutsch

SWS: 2

Lernziele:

siehe Modulbeschreibung

Zugeordnete Lehrveranstaltungen:

Übung zu Physik II (Übung)

Prüfung

Physik II (Elektrodynamik, Optik)

Klausur / Prüfungsdauer: 150 Minuten

Modul PHM-0010 (= GsHsPhy-04-Prak): Physikalisches Anfängerpraktikum (12 Versuche)

ECTS/LP: 8

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Siegfried Horn

Dr. Matthias Klemm (Physikalisches Anfängerpraktikum), Dr. Aladin Ullrich (Grundpraktikum WING)

Inhalte:

Laborversuche aus den Bereichen Mechanik, Wärmelehre, Optik und Elektrizitätslehre

Lernziele/Kompetenzen:

- Die Studierenden kennen die theoretischen experimentellen Grundlagen der klassischen Physik, insbesondere in den Bereichen Mechanik, Wärmelehre, Elektrodynamik und Optik, und haben Grundkenntnisse der physikalischen Messtechnik.
- Sie sind in der Lage, sich mittels Literaturstudium in eine physikalische Fragestellung einzuarbeiten, ein vorgegebenes Experiment aufzubauen und durchzuführen, sowie die Ergebnisse dieser experimentellen Fragestellung mathematisch und physikalisch zu beschreiben,
- und besitzen die Kompetenz, ein experimentelles Ergebnis unter Einbeziehung einer realistischen Fehlerabschätzung und durch Vergleich mit Literaturdaten zu bewerten und einzuordnen.
- Integrierter Erwerb von Schlüsselqualifikationen

Bemerkung:

Das Praktikum muss innerhalb von einem Semester abgeschlossen werden.

Jeder Student / Jede Studentin muss **12 Versuche** durchführen. Zu jedem Versuch ist innerhalb von 2 (Physikalisches Anfängerpraktikum) bzw. 3 (Grundpraktikum WING) Wochen ein Protokoll zu erstellen, in dem die physikalischen Grundlagen des Versuchs, der Versuchsaufbau, der Versuchsverlauf sowie die Ergebnisse und ihre Interpretation dokumentiert sind.

Die schriftliche Ausarbeitung eines Versuchs wird zu zwei Dritteln, die Durchführung vor Ort zu einem Drittel gewertet. Die Abschlussnote wird aus dem Mittelwert aller 12 Versuche errechnet. Weitere Informationen, insbesondere zur rechtzeitigen Anmeldung:

http://www.physik.uni-augsburg.de/exp2/lehre/

Arbeitsaufwand:

Gesamt: 240 Std.

90 h Praktikum, Präsenzstudium

150 h Anfertigen von schriftlichen Arbeiten, Eigenstudium

Das Praktikum baut auf den Inhalten der Vorlesungen des 1. und 2.		ECTS/LP-Bedingungen: 12 mindestens mit "ausreichend" bewertete Versuchsprotokolle
Angebotshäufigkeit: Beginn jedes WS	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
sws : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Physikalisches Anfängerpraktikum (12 Versuche)

Lehrformen: Praktikum **Sprache:** Deutsch

SWS: 6

Lernziele:

Inhalte:

- M1: Drehpendel
- M2: Dichte von Flüssigkeiten und Festkörpern
- M3: Maxwellsches Fallrad
- M4: Kundtsches Rohr
- M5: Gekoppelte Pendel
- M6: Oberflächenspannung und dynamische Viskosität
- M7: Windkanal
- M8: Richtungshören
- W1: Elektrisches Wärmeäquivalent
- W2: Siedepunkterhöhung
- W3: Kondensationswärme von Wasser
- W4: Spezifische Wärmekapazität von Wasser
- W5: Adiabatenexponent
- W6: Dampfdruckkurve von Wasser
- W7: Wärmepumpe
- W8: Sonnenkollektor
- W9: Thermoelektrische Effekte
- W10: Wärmeleitung
- O1: Brennweite von Linsen und Linsensystemen
- O2: Brechungsindex und Dispersion
- O3: Newtonsche Ringe
- O4: Abbildungsfehler von Linsen
- O5: Polarisation
- O6: Lichtbeugung
- O7: Optische Instrumente
- **08: Lambertsches Gesetz**
- O9: Stefan-Boltzmann-Gesetz
- E1: Phasenverschiebung im Wechselstromkreis
- E2: Messungen mit Elektronenstrahl-Oszillograph
- E3: Kennlinien von Elektronenröhren
- E4: Resonanz im Wechselstromkreis
- E5: EMK von Stromquellen
- E6: NTC- und PTC-Widerstand
- E8: NF-Verstärker
- E9: Äquipotential- und Feldlinien
- E10: Induktion

Literatur:

- W. Demtröder, Experimentalphysik 1-4 (Springer)
- D. Meschede, Gerthsen Physik (Springer)
- R. Weber, Physik I (Teubner)
- W. Walcher, Praktikum der Physik (Teubner)
- H. Westphal, Physikalisches Praktikum (Vieweg)
- W. Ilberg, D. Geschke, Physikalisches Praktikum (Teubner)
- Bergmann, Schäfer, Lehrbuch der Experimentalphysik 1-3 (de Gruyter)

Zugeordnete Lehrveranstaltungen:

Physikalisches Anfängerpraktikum (12 Versuche) (Praktikum)

Modul PHM-0141 (= GsHsPhy-11-EP): Struktur der Materie I

ECTS/LP: 8

Version 1.0.0

Modulverantwortliche/r: Prof. Dr.-Ing. Alois Loidl

Inhalte:

ATOMPHYSIK

- Einführung, Entwicklung der Atomvorstellung, Entwicklung der Quantenphysik
- Grundlagen der Quantenmechanik
- · Das Wasserstoff-Atom
- · Atome mit mehreren Elektronen
- · Wechselwirkung von Licht mit Materie

KERNPHYSIK

- · Aufbau der Atomkerne
- · Kernspaltung und Kernfusion
- · Instabile Kerne, Radioaktivität, Kernreaktionen
- · Elementarteilchen und Standardmodell
- · Aufbau der Nukleonen

Lernziele/Kompetenzen:

Die Studierenden

- kennen den Aufbau der Atome; sie verstehen den unterschiedlichen Charakter der klassischen Physik und der Quantenphysik, sind mit den grundlegenden Eigenschaften von Atomen und Molekülen vertraut,
- kennen den Aufbau der Atomkerne, die Grundlagen der Radioaktivität und der Kernkraft; sie sind mit den Grundzügen des Standardmodells vertraut,
- und besitzen die Kompetenz, Problemstellungen in den genannten Bereichen selbständig zu bearbeiten.

Arbeitsaufwand:

Gesamt: 240 Std.

Voraussetzungen: Keine formalen, jedoch sind gute Kenntnisse der Inhalte der Module Physik I und II sowie der Grundlagen der Mathematik empfehlenswert		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester
SWS : 6	Wiederholbarkeit: siehe PO des Studiengangs	

Modulteile

Modulteil: Struktur der Materie I

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4 Inhalte:

siehe Modulbeschreibung

Literatur:

- Demtröder: Experimentalphysik III (Springer)
- · Graewe: Atom- und Kernphysik (Oldenbourg)
- Mayer-Kuckuk: Atomphysik (Teubner)
- · Haken, Wolf: Molekülphysik und Quantenmechanik (Springer)
- Bethge: Kernphysik (Springer)

Modulteil: Übung zu Struktur der Materie I

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Struktur der Materie I

Klausur / Prüfungsdauer: 120 Minuten

Modul PHM-0142 (= GsHsPhy-12-EP): Struktur der Materie II

ECTS/LP: 8

Version 1.0.0

Modulverantwortliche/r: Prof. Dr.-Ing. Alois Loidl

Inhalte:

FESTKÖRPERPHYSIK

- Kristallgitter
- · Gitterdynamik
- · Elektronen im Festkörper
- Halbleiter
- Dielektrika (optische Eigenschaften)
- · Magnetismus
- Supraleitung

MOLEKÜLPHYSIK

- · Bindungskräfte
- Anregungen

Lernziele/Kompetenzen:

Die Studierenden

- kennen Konzepte, Phänomenologie und grundlegende experimentelle Methoden zur Erforschung kondensierter Materie.
- haben die Fähigkeit erworben, grundlegende Probleme der Physik der kondensierten Materie zu verstehen,
- und besitzen die Kompetenz, übergreifende Problemstellungen in den genannten Bereichen selbständig zu bearbeiten. Dies umfasst insbesondere die kritische Analyse der Messergebnisse und einfache Interpretationen im Lichte aktueller Konzepte.

Arbeitsaufwand:

Gesamt: 240 Std.

Voraussetzungen: Keine formalen, jedoch sind gute Kenntnisse der Inhalte der Module Physik I und II, der Grundlagen der Mathematik sowie des Moduls Struktur der Materie I empfehlenswert		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
i e		
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester: ab dem 3.	Minimale Dauer des Moduls: 1 Semester

Modulteile

Modulteil: Struktur der Materie II

Lehrformen: Vorlesung **Sprache:** Deutsch

SWS: 4

Inhalte:

Literatur:

• Demtröder: Experimentalphysik III (Springer)

• Graewe: Atom- und Kernphysik (Oldenbourg)

• Mayer-Kuckuk: Atomphysik (Teubner)

• Haken, Wolf: Molekülphysik und Quantenmechanik (Springer)

• Bethge: Kernphysik (Springer)

Modulteil: Übung zu Struktur der Materie II

Lehrformen: Übung **Sprache:** Deutsch

SWS: 2

Prüfung

Struktur der Materie II

Klausur / Prüfungsdauer: 120 Minuten

Modul DNW-7006 (= GsHsPhy-13-EP): Schulphysik I

ECTS/LP: 4

Version 1.0.0 (seit WS08/09 bis SoSe12) Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Priv.-Doz. Dr. Norbert Büttgen

Inhalte: Themen:

Mechanik: Masse, Kraft, Kraftwirkung, Bewegung

Energie

Thermodynamik: Temperatur, Wärme, Phasenübergänge

Gase Hydraulik Akustik

Wärmekraftmaschinen

Atom- und Kernphysik: Atommodelle, atomare Kräfte und Radioaktivität

Lernziele/Kompetenzen:

Die Studierenden erwerben

- die Fähigkeit zur didaktischen Reduktion der Fachinhalte auf schulartspezifisches Niveau
- Fertigkeiten im Bearbeiten von schülergerechten Übungsaufgaben
- Kompetenzen zur Verknüpfung fachdidaktischer und fachwissenschaftlicher Aspekte

Arbeitsaufwand:

Gesamt: 90 Std.

Voraussetzungen: Basiskompetenz in Physik		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jedes Wintersemester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
sws:	Wiederholbarkeit:	
3	beliebig	

Modulteile

Modulteil: Schulphysik I

Sprache: Deutsch

SWS: 3 **ECTS/LP**: 4

Lernziele:

siehe Modulbeschreibung

Inhalte:

siehe Modulbeschreibung

Literatur:

Vorlesungsskript und Foliensammlung zum download unter www.physik.uni-augsburg.de/did/

Prüfung

Schulrelevante Übungsaufgaben

Hausarbeit/Seminararbeit / Bearbeitungsfrist: 1 Wochen, unbenotet

Prüfungsvorleistungen:

Übungsblätter bearbeiten

Beschreibung:

Unbenotete Bewertung der Hausaufgaben; es muss mindestens die Hälfte der Aufgabenblätter erfolgreich bearbeitet sein

Modul DNW-7007 (= GsHsPhy-14-EP): Schulphysik II

ECTS/LP: 4

Version 1.0.0 (seit WS08/09 bis SoSe12) Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Priv.-Doz. Dr. Norbert Büttgen

Inhalte:

Themen:

Optik: Grundlagen der geometrischen Optik, Spiegelung und Brechung, Linsen und optische Geräte

Elektrik: Ladungen, Spannung, Widerstände und Schaltungen

Magnetismus, Elektromagnetismus

Elektromotorische Kraft

Induktion

Elektronik

Astronomie: Himmelsbeobachtung, Sternmodelle, Sonnenenergie

Lernziele/Kompetenzen:

Die Studierenden erwerben

- die Fähigkeit zur didaktischen Reduktion der Fachinhalte auf schulartspezifisches Niveau
- Fertigkeiten im Bearbeiten von schülergerechten Übungsaufgaben
- Kompetenzen zur Verknüpfung fachdidaktischer und fachwissenschaftlicher Aspekte

Arbeitsaufwand:

Gesamt: 90 Std.

Voraussetzungen: Basiskompetenzen in Physik		ECTS/LP-Bedingungen: Bestehen der Modulprüfung
Angebotshäufigkeit: jedes Sommersemester	Empfohlenes Fachsemester:	Minimale Dauer des Moduls: 1 Semester
sws : 3	Wiederholbarkeit: beliebig	

Modulteile

Modulteil: Schulphysik II

Sprache: Deutsch

SWS: 3 **ECTS/LP**: 4

Lernziele:

siehe Modulbeschreibung

Inhalte:

siehe Modulbeschreibung

Literatur:

Vorlesungsskript und Foliensammlung zum download unter www.physik.uni-augsburg.de/did/

Zugeordnete Lehrveranstaltungen:

Schulphysik II (Vorlesung)

Die Studierenden erwerben - die Fähigkeit zur didaktischen Reduktion der Fachinhalte auf schulartspezifisches Niveau - Fertigkeiten im Bearbeiten von schülergerechten Übungsaufgaben - Kompetenzen zur Verknüpfung fachdidaktischer und fachwissenschaftlicher Aspekte

Prüfung

Schulrelevante Übungsaufgaben

Hausarbeit/Seminararbeit / Bearbeitungsfrist: 1 Wochen, unbenotet

Prüfungsvorleistungen:

Übungsblätter bearbeiten

Beschreibung:

Unbenotete Bewertung der Hausaufgaben; es muss mindestens die Hälfte der Aufgabenblätter erfolgreich bearbeitet sein